DD-2803

M. A./ M. Sc. (Previous) EXAMINATION, 2020

MATHEMATICS
Paper Third
(Topology)
Time : Three Hours
Maximum Marks : 100
Note: All questions are compulsory. Solve any two parts of each question. All questions carry equal marks.
Unit-I

1. (a) Prove that no set can be equivalent to its power set.
(b) If $\left\{\mathrm{T}_{\alpha}\right\}_{\alpha \in \Lambda}$ is a family of topologies on a nonempty set X, then prove that (X, T) is also a topological space, where $T=\underset{\alpha \in \Lambda}{\cap} T_{\alpha}$.
(c) Define Kuratowski closure operator on a non-empty set X. Prove that if \mathbf{C} is the Kuratowski's closure operator on X, then there exists a unique topology T on X such that for each $A \subset X, C(A)$ coincides with T-closure of A.

Unit-II
2. (a) Let X, Y and Z be topological spaces and the mapping $f: \mathrm{X} \rightarrow \mathrm{Y}$ and $g: \mathrm{Y} \rightarrow \mathrm{Z}$ be continuous. Then prove that the composition mapping g o f : $\mathrm{X} \rightarrow \mathrm{Z}$ is also continuous.
(b) Prove that a topological space (X, T) is T_{1}-space iff every singleton subset $\{x\}$ of X is T-closed.
(c) State and prove Urysohn's lemma.

Unit-III

3. (a) Prove that every closed subset of a compact set is compact.
(b) Prove that a Hausdorff space X is locally compact iff each of its points is an interior point of some compact subspace of \mathbf{X}.
(c) Prove that continuous image of a connected set is connected.

Unit-IV

4. (a) State and prove Tychonoff's theorem.
(b) State and prove Embedding lemma.
(c) Prove that the product space $X=\prod_{\alpha \in \Lambda} X_{\alpha}$ is connected iff each coordinate space X_{α} is connected.
Unit-V
5. (a) Prove that the relation ' Ω_{p} of path homotopy is an equivalence relation.
(b) Let α be a path in X from x_{0} to x_{1}. Define a map $\hat{\alpha}: \pi_{1}\left(\mathrm{X}, x_{0}\right) \rightarrow \pi_{1}\left(\mathrm{X}, x_{1}\right)$ by $\hat{\alpha}([f \mid)=[\bar{\alpha}] \times[f] \times[\alpha]$. Prove that $\hat{\alpha}$ is a group isomorphism.
(c) Let (X, T) be a topological space and let $\mathrm{Y} \subset \mathrm{X}$. Then prove that Y is T-open iff no net in $X-Y$ can converge to a point in Y .
