Roll No.

DD-2801

M. A./M. Sc. (Previous)
 EXAMINATION, 2020
 MATHEMATICS
 Paper First
 (Advanced Abstract Algebra)

Time : Three Hours
Maximum Marks : 100
Note: Attempt any two parts from each question. All questions carry equal marks.

Unit-I

1. (a) Prove that any finite P-group is solvable.
(b) E be an extension field of a field F and $u \in \mathrm{E}$ be algebraic over F . If $p(x) \in \mathrm{F}(x)$ be a polynomial of the least degree such that $p(u)=0$, then prove that :
(i) $\quad p(x)$ is irreducible 'over F
(ii) If:

$$
g(x) \in \mathrm{F}(x)
$$

is such that $g(u)=0$, then $p(x) \mid g(x)$.
(iii) There is exactly are menic polynomial $p(x) \in \mathrm{F}(x)$ is least degree such that $p(u)=0$.
(c) If C is the field of complex numbers and R is the field of real numbers, then show that C is a normal extension of R .
Unit-II
2. (a) Show that the polynomial :

$$
x^{7}-10 x^{5}+15 x+5
$$

is not solvable by radicals over Q .
(b) Prove that:

$$
f(x) \in \mathrm{F}(x)
$$

is solvable by radicals over F if and only if its splitting field E over F has solvable Galois group G (E/F).
(c) Let F be a field of characteristic $\neq 2$ and $x^{2}-a \in \mathrm{~F}(x)$ be an irreducible polynomial over F, then prove that its Galois group is of order 2.

Unit-III

3. (a) Let R be a ring with unity. Show that an R module M is cyclic if and only if $M \cong \frac{R}{I}$ for some left ideal I of R.
(b) If M be a finitely generated free module over a commutative ring R. Then prove all bases of M have the same number of elements.
(c) Prove that every submodule and every quotient module of Noetherian module is Noetherian.
Unit-IV
4. (a) Let $\lambda \in F$ be a characteristic root of $T \in A(V)$. Then prove that for any polynomial $q(x) \in \mathrm{F}(x)$, $q(\lambda)$ is a characteristic root of $q(\mathrm{~T})$.
(b) Let the linear transformation $T \in A_{F}(V)$ be nilpotent, then prove that :

$$
\alpha_{0}+\alpha_{1} \mathrm{~T}+\alpha_{2} \mathrm{~T}^{2}+\ldots+\alpha_{m} \mathrm{~T}^{m}
$$

. : where $\alpha_{i} \in \mathrm{~F}, 0 \leq i \leq m$, is invertible if $\alpha_{0} \neq 0$.
(c) Find the Jordan Canonical form of :

$$
A=\left[\begin{array}{rrr}
0 & 4 & 2 \\
-3 & 8 & 3 \\
4 & -8 & -2
\end{array}\right]
$$

Unit-V
5. (a) Find the rational canonical form of the matrix whose invariant factors are $(x-3),(x-3)(x-1)$ and $(x-3)(x-1)^{2}$.
(b) Find the Smith normal form and rank for the matrix over PID R :

$$
\left[\begin{array}{ccc}
-x-3 & 2 & 0 \\
1 & -x & 1 \\
1 & -3 & -x-2
\end{array}\right]
$$

where $\mathrm{R}=\mathrm{Q}[x]$.
(c) Let R be a principal ideal domain and let M be any finitely generated R module, then :

$$
\mathrm{M}=\mathrm{R}^{s} \oplus \frac{\mathrm{R}}{\mathrm{R} a_{1}} \oplus \frac{\mathrm{R}}{\mathrm{R} a_{2}} \oplus \ldots \ldots \ldots \oplus \frac{\mathrm{R}}{\mathrm{R} a_{r}}
$$

a direct sum of cyclic modules where the a_{i} are nonzero non-units and $a_{i} \mid a_{i+1}, i=1,2, \ldots \ldots . ., r-1$.

