DD-463

M. A./M. Sc. (Second Semester) EXAMINATION, May-June, 2020

MATHEMATICS

Paper Fifth

(Advanced Discrete Mathematics—II)

Time: Three Hours

Maximum Marks: 80

Note: Attempt all the *five* questions selecting *two* parts from each Unit. All questions carry equal marks.

Unit-I

- (a) Define graph and prove that the number of vertices of odd degree in a graph is always even.
 - (b) Define the following:
 - (i) Sub-graph
 - (ii) Degree of a vertex
 - (iii) Complete graph
 - (iv) Planar graph
 - (c) Show that a simple graph with n vertices and k components can have at most $\frac{(n-k)(n-k+1)}{2}$ edges.

Unit-II

2. (a) Define tree and find the minimal spanning tree for the weighted graph in the following figure using Kruskal's algorithm:

(b) Define circuit matrix and find the circuit matrix in given graph:

(c) Define spanning tree and prove that a tree with n vertices has n-1 edges.

Unit-III

- 3. (a) Explain Dijkstra's algorithm in brief.
 - (b) Write short notes on the following:
 - (i) In degree and out degree of a vertex
 - (ii) Directed tree and search trees
 - (c) Define the following:
 - (i) Directed graph

- (ii) Weighted undirected graph
- (iii) Strong connectivity
- (iv) Tree traversals

Unit-IV

4. (a) Minimize finite state machine M, where M is given by the following state table:

State	Input		Output
	0 arcs	1	
$\rightarrow s_0$	<i>S</i> ₃	. s ₁	0
<i>s</i> ₁	S4 1	<i>s</i> ₁	1
S2	S ₃	<i>s</i> ₀	0
S ₃	S2	. S ₃	1
	s_1	<i>s</i> ₀	0

(b) Define transition system. Consider the finite state machine where transition function δ is given by the following table in the form of a transition table. Here, $Q = \{q_0, q_1, q_2, q_3\}$, $\Sigma = \{0, 1\}$, $F = \{q_0\}$. Give the entire sequence of states for the input string 1011011:

Transition Function Table

C	Input		
State	0	1	
$\rightarrow q_0$	q_2	91 (I)	
q_1	q_3	q_0	
92	q_0	<i>q</i> ₃ ″	
<i>q</i> ₃	q_1	q_2	

- (c) Write short notes on the following:
 - (i) Finite state machines and their transition table diagrams
 - (ii) Reduced machine and Homomorphism

Unit-V

5. (a) Define non-deterministic finite automata and find a deterministic acceptor equivalent to $M = (\{q_0, q_1, q_2\}, \{a, b\}, \delta, q_0, \{q_2\})$ δ is given in the following table:

State Table

States/Σ	States/ Σ a	
$\rightarrow q_0$	q_0, q_1	q_2
q_1	· 90	q_1
q_2		q_0, q_1

(b) Define Mealy machine and consider the Moore machine described by the transition table given by table. Construct the corresponding Mealy machine:

Moore Machine

Present State	Next State		H SOME
	a=0	a=1	Output
$\rightarrow q_1$	q_1	q ₂	0
q_2	q_1	q_3	0
q_3	q_1	q_3	1

- (c) Define the following:
 - (i) DFA
 - (ii) Moore Machine
 - (iii) Finite Automata
 - (iv) Acceptors