Roll No.

DD-768

M. A./M. Sc. (Fourth Semester) EXAMINATION, 2020

MATHEMATICS

(Optional—A)

Paper Fourth

(Operations Research)

Time : Three Hours Maximum Marks : 80

Note : Attempt any *two* parts from each question. All questions carry equal marks.

Unit—I

1. (a) Use Dynamic Programming to solve the following problem :

Minimize :

$$u_1^2 + u_2^2 + u_3^2$$

subject to :

$$u_1 + u_2 + u_3 = 10$$

 $u_1, u_2, u_3 \ge 0.$

and

(b) Write the applications of Dynamic Programming.

 (c) Solve the following LPP by using dynamic programming : Maximize :

$$z = 3x_1 + 4x_2$$

subject to :

$$2x_1 + x_2 \le 40$$

$$2x_1 + 5x_2 \le 180$$

$$x_1, x_2 \ge 0.$$

Unit—II

2. (a) Calculate the value of game and probability of playing each strategy in the following game theory matrix :

(b) Solve the following 2×4 game by graphical method :

Player B $1 \quad 2 \quad 3 \quad 4$ Player A $2 \quad 5 \quad 4 \quad 4 \quad 7$ Player A

(c) Solve the following 3×3 game by linear programming method :

Player B

		B_1	B_2	B ₃
	A_1	1	-1	3
Player A	A_2	3	5	-3
	A ₃	6	2	-2

Unit—III

3. (a) Solve the following integer programming problem using branch and bound method :Min. :

$$z = 3x_1 + 2.5x_2$$

subject to :

$$x_1 + 2x_2 \ge 20$$
$$3x_1 + 2x_2 \ge 50$$

and $x_1, x_2 \ge 0$ and integer.

- (b) Write the limitations of integer programming.
- (c) Solve the mixed integer programming problem : minimize :

$$z = 2x_1 + 2x_2 + 4x_3$$

subject to :

$$2x_1 + 3x_2 + 5x_3 \ge 2$$

$$3x_1 + x_2 + 7x_3 \le 3$$

$$x_1 + 4x_2 + 6x_3 \le 5$$

$$x_1, x_2, x_3 \ge 0.$$

and

Unit—IV

4. (a) Write a short note on economic interpretation of dual linear programming.

- (b) Explain about input-output analysis.
- (c) Write a short note on indecomposable and decomposable economics.

Unit—V

5. (a) Determine x_1 and x_2 so as to :

Maximize :

$$z = 12x_1 + 21x_2 + 2x_1x_2 - 2x_1^2 - 2x_2^2$$

by using Kuhn-Tucker condition, subject to :

$$\begin{aligned} x_2 &\leq 8\\ x_1 + x_2 &\leq 10\\ x_1, x_2 &\geq 0 \,. \end{aligned}$$

(b) Solve the following quadratic programming problem using Wolf's method :

Maximize :

$$z = 6x_1 + 3x_2 - 2x_1^2 - 3x_2^2 - 4x_1x_2$$

Subject to :

$$x_1 + x_2 \le 1$$
$$2x_1 + 3x_2 \le 4$$
$$x_1, x_2 \ge 0.$$

and

and

(c) Solve the following non-linear programming problem using separable programming : Maximize :

$$z = 2x_1^3 + \frac{5}{2}x_2$$

Subject to :

$$2x_1^2 + 3x_2 \le 16$$

$$x_1, x_2 \ge 0.$$

and

DD-768

3,300