Roll No.	
----------	--

DD-459

M. A./M. Sc. (Second Semester) EXAMINATION, May/June, 2020

MATHEMATICS

Paper First

(Advanced Abstract Algebra—II)

Time: Three Hours

Maximum Marks: 80

Note: Attempt any two parts from each question. All questions carry equal marks.

Unit—I

- 1. (a) Let M be a (finitely generated unital) free R-module with a basis $\{e_1, e_2, \dots, e_n\}$, then show that $M = R^n$.
 - (b) Prove that R-module M is noetherian if and only if every submodule of M is finitely generated.
 - (c) State and prove Wedderburn-Artin theorem.

Unit-II

- 2. (a) For $T \in \text{Hom }(U, V)$, $\alpha \in F$, then show that $\alpha T \in \text{Hom }(U, V)$.
 - (b) Let A be an algebra with unit element, over F. Then show that A is isomorphic to a subalgebra of A(V) for some vector space V over F.

(c) Let U and V be vector spaces over a field F, then show that $\operatorname{Hom}_F(U, V) \simeq F^m \times n$ as vector space over F.

Unit-III

- 3. (a) Show that if W ⊂ V be invariant under T∈A (V), then T induces a linear transformation T on the quotient space V/W, defined by (V + W) T̄ = VT + W. If T satisfies the polynomial q(x)∈F[x], then T̄ also satisfy q (x). If P₁ (x) is the minimal polynomial for T̄ over F and if P (x) is that for T then p₁ (x) | p (x).
 - (b) Let the linear transformation $T \in AF(V)$ be nilpotent, then show that $\alpha_0 + \alpha_1 T + \cdots + \alpha_m T^m$, where $\alpha i \in F$, $0 \le i \le m$ is invertible if $\alpha_0 \ne 0$.
 - (c) Show that two nilpotent linear transformations S, $T \in A(V)$ are similar if and only if they have the same invariants.

Unit—IV

4. (a) Obtain the Smith normal form and rank for the following matrix over a PID R:

$$\begin{bmatrix} 0 & 2 & -1 \\ -3 & 8 & 3 \\ 2 & -4 & -1 \end{bmatrix}, R = Z$$

(b) Obtain the Smith normal form and rank for the following matrix over PID R:

$$\begin{bmatrix} -x-3 & 2 & 0 \\ 1 & -x & 1 \\ 1 & -3 & -x-2 \end{bmatrix}, \text{ where } R = Q[x]$$

(c) Find the abelian group generated by (x_1, x_2, x_3) subject to $5x_1 + 9x_2 + 5x_3 = 0$, $2x_1 + 4x_2 + 2x_3 = 0$, $x_1 + x_2 - 3x_3 = 0$.

Unit-V

5. (a) Reduce the following matrix A to a rational canonical form:

$$\begin{bmatrix} -3 & 2 & 0 \\ 1 & 0 & 1 \\ 1 & -3 & -2 \end{bmatrix}$$

- (b) Let V be a finite dimensional vector space over a field F, and let $T \in \text{Hom } F(V, V)$. Suppose f(x) = g(x)h(x) is a factorization of f(x) in f(x) such that gcd(g(x), h(x)) = 1, then show that $f(T) = \hat{0}$ if and only if $V = \ker g(T)(f) \ker h(J)$.
- (c) Find invariant factors, elementary divisors and the Jordan canonical form of the following matix:

$$\begin{bmatrix} 0 & 4 & 2 \\ -3 & 8 & 3 \\ 4 & -8 & -2 \end{bmatrix}$$