Roll	No.	•••••
------	-----	-------

DD-762

M. A./M. Sc. (Fourth Semester) EXAMINATION, 2020

MATHEMATICS

Paper First

(Functional Analysis—II)

Time: Three Hours

Maximum Marks: 80

Note: Attempt any *two* parts from each question. All questions carry equal marks.

- 1. (a) State and prove uniform boundedness theorem.
 - (b) State and prove open mapping theorem.
 - (c) Let T be a closed linear map of a Banach space X into a Banach space Y. Then T is continuous.
- 2. (a) State and prove Hahn-Banach threorem for real linear space.
 - (b) A closed subspace of a reflexive Banach space is reflexive.
 - (c) State and prove closed range theorem.
- 3. (a) Every inner product space is a normed space but converse need not be true.

- (b) Give the definition of orthonormal set and let $S = \{x_1, x_2, \dots\}$ be linearly independent sequence in an inner product space. Then there exists an orthonormal sequence $T = \{y, y_2, \dots\}$ such that L(S) = L(T).
- (c) Let $\{e_i\}$ be a non-empty arbitrary orthonormal set in a Hilbert space H. Then the following conditions are equivalent:
 - (i) $\{e_i\}$ is complete
 - (ii) $x \perp \{e_i\} \Rightarrow x = 0$
 - (iii) $x \in \mathbb{H} \Rightarrow x = \Sigma(x, e_i) e_i$
 - (iv) $x \in H \Rightarrow ||x||^2 = \sum_i |(x, e_i)|^2$
- 4. (a) A closed convex subset C of a Hilbert space H contains a unique vector of smallest *n* or *m*.
 - (b) Let M be a proper closed linear subspace of a Hilbert space H. Then there exists a non-zero vector z_0 in H s. t. $z_0 \perp M$.
 - (c) State and prove projection theorem.
- 5. (a) Let T be an operator on H. Define the adjoint T^* of T. The mapping $T \rightarrow T^*$ of B (H) into itself has the following properties: For T, T_1 , $T_2 \in \beta(H)$ and $\alpha \in C$:
 - (i) $I^* = I$, where I is the identify operator
 - (ii) $(T_1 + T_2)^* = T_1^* + T_2^*$
 - (iii) $(\alpha T)^* = \alpha T^*$
 - (iv) $(T_1T_2)^* = T_2^*T_1^*$

- (b) If T_1 and T_2 are normal operators on a Hilbert space H with the property that either commutes with the adjoint of the other then $T_1 + T_2$ and T_1T_2 are normal.
- (c) Let T be a bounded linear operator on a Hilbert space H. Then:
 - (i) T is normal $\Leftrightarrow \|T^*x\| = \|Tx\| \quad \forall x \in H$
 - (ii) If T is normal, then $||T^2|| = ||T||^2$

DD-762 3,300