DD-2763

B. A./B. Sc./B. Sc. B. Ed. (Part III)

EXAMINATION, 2020
MATHEMATICS
(Optional)
Paper Third (D)
(Programming in C and Numerical Analysis)
Time : Three Hours
Maximum Marks : 30
Note : Attempt any two parts from each Unit. Each part carries equal marks.
Unit-I

1. (a) Write the different types of loop in C language with proper syntax.
(b) Define a term "String." Make a list of String functions with suitable program segments.
(c) Explain the term "Algorithm." How is Algorithm different from Flow Chart?
Unit-II
2. (a) Using Regula-Falsi method, find the real root of the following equation correct to three decimal places :
$x \log _{10} x-1.2$
(b) Express the function $\frac{x^{3}+x-3}{x^{3}-2 x^{2}-2 x+2}$ as sums if partial fraction using Lagrange's Interpolation formula.
(c) Derive the Newton's method for finding the q th root of a positive number $\mathrm{N}, \mathrm{N} 1 / q$, where $\mathrm{N}>0, q>0$. Hence compute $171 / 3$ correct to four decimal places, assuming the initial approximation as $x_{0}=2$.

Unit-III

3. (a) Apply Guass elimination method to solve the equations:

$$
\begin{gathered}
2 X+Y+Z=10 \\
3 X+2 Y+3 Z=18 \\
X+4 Y+9 Z=16
\end{gathered}
$$

(b) Solve the following system of equations using LU Decomposition method :

$$
\begin{gathered}
X_{1}+X_{2}+X_{3}=1 \\
4 X_{1}+3 X_{2}-X_{3}=6 \\
3 X_{1}+5 X_{2}+3 X_{3}=4
\end{gathered}
$$

(c) Use the Jacobi method to approximate the solution of the following system of linear equations:

$$
\begin{gathered}
5 X_{1}-2 X_{2}+3 X_{3}=-1 \\
-3 X_{1}+9 X_{2}+X_{3}=2 \\
2 X_{1}-X_{2}-7 X_{3}=3
\end{gathered}
$$

Continue the iterations until two successive approximations are identical when rounded to three significant digits.

Unit-IV

4. (a) Solve the following using Runge-Kutta method of order 4 for $0 \leq x \leq 2$. Use a step size of $h=0.2$:

$$
\begin{aligned}
\frac{d y}{d x} & =(x+y) \sin x y \\
y(0) & =5
\end{aligned}
$$

(b) Apply Euler method to find the solution of :

$$
\begin{aligned}
\frac{d y}{d x} & =\sin (x+y)-e^{x} \\
y(0) & =4, \quad \text { use } h=0.1 .
\end{aligned}
$$

(c) Explain methods based on numerical differentiation.

Unit-V

5. (a) Explain Statistical test of pseudo-random number.
(b) In a certain factory turning out razor blades, there is a small chance of 0.002 for any blade to be defective. The blades are supplied in packets of 10 , use Poisson distribute on to calculate the approximate number of packets containing no defective, one defective and two defective blades respectively in a consignment of 10000 packets.
(c) Write a short note on error analysis for Monte-Carlo integration.
