Roll No.

DD-2805

M. A./M. Sc. (Previous) EXAMINATION, 2020

MATHEMATICS

Paper Fifth

(Advance Discrete Mathematics)

Time : Three Hours

Maximum Marks : 100

Note : Attempt any *two* parts from each question. All questions carry equal marks.

Unit—I

- 1. (a) Define Tautology. If H_1 , H_2 ,, H_m and P imply Q, then prove that H_1, H_2, \dots, H_m imply $P \rightarrow Q$.
 - (b) Define Semigroup Homomorphism. Let (S, *), (T, Δ) and (V, ⊕) be semigroups and g : S → T and h : T → V be semigroup homomorphism. Then show that (h o g) : S → V is a semigroup homomorphism from (S, *) to (V, ⊕).
 - (c) Show that :

$$\mathbf{P} \to (\mathbf{Q} \to \mathbf{R}) \Leftrightarrow \mathbf{P} \to (\neg \mathbf{Q} \lor \mathbf{R}) \Leftrightarrow (\mathbf{P} \land \mathbf{Q}) \to \mathbf{R}$$

Unit—II

[2]

2. (a) Define distributive lattice and let $(L, *, \oplus)$ be a distributive lattice, then prove that for any $a, b, c \in L$:

 $(a * b = a * c) \land (a \oplus b = a \oplus c) \Rightarrow b = c.$

(b) Use the Karnaugh map representation to find a minimal sum-of-product expression of the following function :

$$f(a,b,c,d) = \sum (10,12,13,14,15).$$

(c) Define a lattice and sublattice. Prove that the set

 $M = \{1, 2, 3, 4, 6, 8, 12, 24\};$

the set of all divisors of the integer 24 is a sublattice of the lattice $(1, \leq)$ with respect to the relation " \leq " where :

$$L = \{1, 2, 3, 4, 6, 8, 9, 12, 18, 24\}$$

and " $x \le y$ " means x divides y.

Unit—III

3. (a) Define planar graph and for any connected planar graph, prove that :

 $\mathbf{V} - \mathbf{e} + \mathbf{r} = 2 \, .$

(b) Define Incidence matrix and find the incidence matrix in given graph :

(c) Define spanning tree and find the minimal spanning tree for the weighted graph in the following figure using Kruskal's algorithm :

Unit—IV

4. (a) Define transition system. Prove that for any transition function δ and for any two input strings x and y:

$$\delta(q, xy) = \delta(\delta(q, x), y).$$

(b) Define Mealy machine and consider the Moore machine described by the transition table given by table. Construct the corresponding Mealy machine :

Present State	Next State		Output
	a = 0	a = 1	
$\rightarrow q_1$	q_1	q_2	0
q_2	q_1	q_3	0
q_3	q_1	<i>q</i> ₃	1

- (c) Define the following :
 - (i) Equivalence of finite state machine

[4]

- (ii) Reduced machine
- (iii) Deterministic finite automata
- (iv) Non-deterministic finite automata

Unit—V

- 5. (a) Define Polish Notation and prove that the rank of any well formed Polish formula is 1 and the rank of any proper head of a polish is greater than or equal to 1.
 - (b) State and prove Pumping Lemma.
 - (c) Define Language and show that the language $L(G) = \{a^n b a^n : n \ge 1\}$ is generated by grammar :

 $\mathbf{G} = \{(\mathbf{S}, c), (a, b), \mathbf{S}, \mathbf{\phi}\},\$

where ϕ is the set of production S $\rightarrow aca, c \rightarrow aca, c \rightarrow b$.

DD-2805