Roll No.

\qquad

DD-2805

M. A./M. Sc. (Previous)

EXAMINATION, 2020

MATHEMATICS

Paper Fifth

(Advance Discrete Mathematics)
Time : Three Hours
Maximum Marks : 100
Note: Attempt any two parts from each question. All questions carry equal marks.

Unit-I

1. (a) Define Tautology. If $\mathrm{H}_{1}, \mathrm{H}_{2}$, \qquad H_{m} and P imply Q , then prove that $\mathrm{H}_{1}, \mathrm{H}_{2}, \ldots \ldots . ., \mathrm{H}_{m}$ imply $\mathrm{P} \rightarrow \mathrm{Q}$.
(b) Define Semigroup Homomorphism. Let ($\mathrm{S},{ }^{*}$), (T, Δ) and (V, \oplus) be semigroups and $g: \mathrm{S} \rightarrow \mathrm{T}$ and $h: \mathrm{T} \rightarrow \mathrm{V}$ be semigroup homomorphism. Then show that $\left(\begin{array}{lll}h & \mathrm{o} & g\end{array}\right): \mathrm{S} \rightarrow \mathrm{V}$ is a semigroup homomorphism from $(\mathrm{S}, *)$ to (V, \oplus).
(c) Show that:

$$
\mathrm{P} \rightarrow(\mathrm{Q} \rightarrow \mathrm{R}) \Leftrightarrow \mathrm{P} \rightarrow(7 \mathrm{Q} \vee \mathrm{R}) \Leftrightarrow(\mathrm{P} \wedge \mathrm{Q}) \rightarrow \mathrm{R}
$$

Unit-II

2. (a) Define distributive lattice and let $(\mathrm{L}, *, \oplus)$ be a distributive lattice, then prove that for any $a, b, c \in \mathrm{~L}$:

$$
(a * b=a * c) \wedge(a \oplus b=a \oplus c) \Rightarrow b=c
$$

(b) Use the Karnaugh map representation to find a minimal sum-of-product expression of the following function :

$$
f(a, b, c, d)=\sum(10,12,13,14,15)
$$

(c) Define a lattice and sublattice. Prove that the set

$$
\mathrm{M}=\{1,2,3,4,6,8,12,24\}
$$

the set of all divisors of the integer 24 is a sublattice of the lattice $(1, \leq)$ with respect to the relation " $\leq "$ where:

$$
\mathrm{L}=\{1,2,3,4,6,8,9,12,18,24\}
$$

and " $x \leq y$ " means x divides y.

Unit-III

3. (a) Define planar graph and for any connected planar graph, prove that:

$$
\mathrm{V}-e+r=2
$$

(b) Define Incidence matrix and find the incidence matrix in given graph :

(c) Define spanning tree and find the minimal spanning tree for the weighted graph in the following figure using Kruskal's algorithm :

4. (a) Define transition system. Prove that for any transition function δ and for any two input strings x and y :

$$
\delta(q, x y)=\delta(\delta(q, x), y)
$$

(b) Define Mealy machine and consider the Moore machine described by the transition table given by table. Construct the corresponding Mealy machine :

Moore Machine

Present State	Next State		Output
	$a=0$	$a=1$	
$\rightarrow q_{1}$	q_{1}	q_{2}	0
q_{2}	q_{1}	q_{3}	0
q_{3}	q_{1}	q_{3}	1

(c) Define the following:
(i) Equivalence of finite state machine
(ii) Reduced machine
(iii) Deterministic finite automata
(iv) Non-deterministic finite automata

Unit-V

5. (a) Define Polish Notation and prove that the rank of any well formed Polish formula is 1 and the rank of any proper head of a polish is greater than or equal to 1 .
(b) State and prove Pumping Lemma.
(c) Define Language and show that the language $\mathrm{L}(\mathrm{G})=\left\{a^{n} b a^{n}: n \geq 1\right\}$ is generated by grammar :

$$
\mathrm{G}=\{(\mathrm{S}, c),(a, b), \mathrm{S}, \phi\}
$$

where ϕ is the set of production $\mathrm{S} \rightarrow a c a, c \rightarrow a c a, c \rightarrow b$.

