DD-2814

M. A./M. Sc. (Final) EXAMINATION, 2020

MATHEMATICS
(Optional)
Paper Fifth (iii)

(Fuzzy Sets and Their Applications)

Time : Three Hours
Maximum Marks : 100
Note : Attempt any two parts from each question. All questions carry equal marks.

1. (a) Prove that a Fuzzy set A on R is convex iff:

$$
\mathrm{A}\left(\lambda x_{1}+(1-\lambda) x_{2}\right) \geq \min \left[\mathrm{A}\left(x_{1}\right), \mathrm{A}\left(x_{2}\right)\right]
$$

for all $x_{1}, x_{2} \in \mathrm{R}$ and all $\lambda \in[0,1]$ where min denotes the minimum operator.
(b) Let $f: \mathrm{X} \rightarrow \mathrm{Y}$ be an arbitrary crisp function. Then for any $\mathrm{A} \in \mathbf{F}(\alpha)$ and all $\alpha \in[0,1]$ prove that (f fuzzified by the extension principle) $\alpha[f(\mathrm{~A})] \supseteq f\left({ }^{\alpha} \mathrm{A}\right)$ but not conversely.
(c) Prove that the standard fuzzy intersection is the only idempotent t-norm. Also prove that ($a b, a+b-a b$, $\left(c_{s}\right)$ is a dual triple where $\left(c_{s}\right)$ is the standard complement.
2. (a) Calculate the fuzzy cardinality and scalar cardinality of the fuzzy set defined by $\mathrm{A}: \mathrm{X} \rightarrow[0,1]$, where $X=\{0,2,4,6, \ldots \ldots ., 80\}$ and :
$\mathrm{A}(x)=\left\{\begin{array}{cll}0 & \text { if } & x \leq 20 \text { or } x \geq 60 \\ (x-20) / 15 & \text { if } & 20<x<35 \\ (60-x) / 15 & \text { if } & 45<x<60 \\ 1 & \text { if } & 35 \leq x \leq 45\end{array}\right.$
(b) Let $\mathrm{A} \in \mathbf{F}(\mathrm{R})$. Then prove that A is a fuzzy number iff there exists a closed interval $[a, b] \neq \phi$ such that:

$$
\mathrm{A}(x)=\left\{\begin{array}{ccc}
1 & \text { for } & x \in[a, b] \\
l(x) & \text { for } & x \in(-\infty, a) \\
r(x) & \text { for } & x \in(b, \infty)
\end{array}\right.
$$

where l is a function from $(-\infty, a)$ to $[0,1]$ that is monotonic increasing, continuous from the right and such that $l(x)=0$ for $x \in\left(-\infty, w_{1}\right)$ and r is a function from (b, ∞) to $[0,1]$ that is monotonic decreasing, continuous from the left and such that $r(x)=0$ for $x \in\left(w_{2}, \infty\right)$.
(c) Find the transitive max-min closure R_{T} for a fuzzy relation defined by the following membership matrix :

$$
\mathrm{R}=\left[\begin{array}{llll}
.8 & .6 & 0 & 0 \\
1 & 0 & 1 & 1 \\
.2 & .4 & 0 & 0 \\
0 & 0 & .9 & .8
\end{array}\right]
$$

Unit-III

3. (a) Solve p o $\mathrm{Q}=r$, where :

$$
\mathrm{Q}=\left[\begin{array}{cccc}
.1 & .4 & .5 & .1 \\
.9 & .7 & .2 & 0 \\
.8 & 1 & .5 & 0 \\
.1 & .3 & .6 & 0
\end{array}\right] \text { and } r=[.8 .7 .50]
$$

(b) Prove that:

$$
\mathrm{Pl}(\mathrm{~A}) \geq \operatorname{Bel}(\mathrm{A})
$$

for all $\mathrm{A} \in \mathrm{P}(\mathrm{X})$.
(c) Let a fuzzy set F be defined on N by $\mathrm{F}=.4 / 1+.7 / 2$ $+1 / 3+.8 / 4+.5 / 5$ and $\mathrm{A}(x)=0$ for all $x \notin\{1,2,3,4,5\}$. Determine Nec (A) and Pos (A) induced by F for all $\mathrm{A} \in \mathrm{P}(\{1,2,3,4,5\})$.
Unit-IV
4. (a) Write short notes on the following :
(i) Multivalued logic
(ii) Linguistic hedges
(b) Let sets of values of variables x and y be $\mathrm{X}=\left\{x_{1}, x_{2}, x_{3}\right\}$ and $\mathrm{Y}=\left\{y_{1}, y_{2}\right\}$, respectively. Assume that a proposition "if x is A , then y is B " is given, where $\mathrm{A}=.5 / x_{1}+1 / x_{2}+.6 / x_{3}$ and $\mathrm{B}=1 / y_{1}+.4 / y_{2}$. Then, given a fact expressed by the proposition " x is A^{\prime}," where $\mathrm{A}^{\prime}=.6 / x_{1}+.9 / x_{2}+.7 / x_{3}$. Use the generalized modus ponens to derive a conclusion in the form " y is B'."
(c) Write the reasonable axioms of fuzzy implications.

Unit-V

5. (a) What are the basic components of a general fuzzy controller? Discuss in detail.
(b) Assume that each individual of a group of eight decision makers has a total preference ordering P ; $\left(i \in \mathrm{~N}_{8}\right)$ on a set of alternatives $\mathrm{X}=\{w, x, y, z\}$ as follows :

$$
\begin{gathered}
\mathrm{P}_{1}=\{w, x, y, z\} \\
\mathrm{P}_{2}=\mathrm{P}_{5}=\{z, y, x, w\} \\
\mathrm{P}_{3}=\mathrm{P}_{7}=\{x, w, y, z\} \\
\mathrm{P}_{4}=\mathrm{P}_{8}=\{w, z, x, y\} \\
\mathrm{P}_{6}=\{z, w, x, y\}
\end{gathered}
$$

Then :
(i) Find the fuzzy preference ordering relations.
(ii) Also find α-cuts of this fuzzy relation S and group level of agreement concerning the social choice denoted by the total ordering $\{w, z, x, y\}$.
(c) Solve the following fuzzy linear programming problem :
Max. :

$$
z=6 x_{1}+5 x_{2}
$$

s. t. :

$$
\begin{gathered}
(5,3,2) x_{1}+(6,4,2) x_{2} \leq(25,6,9) \\
(5,2,3) x_{1}+(2,1.5,1) x_{2} \leq(13,7,4) \\
x_{1}, x_{2}>0
\end{gathered}
$$

DD-2814

