2. (a) Prove Bianchi identity:

$$
\mathrm{R}_{i j k, l}^{a}+\mathrm{R}_{i k l, j}^{a}+\mathrm{R}_{i l j, k}^{a}=0
$$

(b) State Einstein principle of equivalence. What are the observable consequences of general theory of relativity?
(c) Obtain the general relativistic equation of motion of a particle in gravitational field through a principle of least action.

## Unit-III

3. (a) Derive Schwarzchild exterior solution for the gravitational field of a single mass continually at rest at the origin.
(b) Derive the formula for energy momentum tensor for a perfect fluid in the form :

$$
\mathrm{T}_{\mu}^{v}=(\rho+p) v_{\mu} v^{v}-g_{\mu}^{v} p
$$

(c) Obtain the equation for a planetary orbit and obtain expression for the advance of the perihelion to an orbit.

## Unit-IV

4. (a) Obtain the line element for Einstein and de-Sitter's cosmological models.
(b) Obtain the line element for Robertson's non-statics cosmological model. Show how this model reveals the universe is expanding.
(c) Discuss red shift in Robertson-Walker line element.

## Unit-V

5. (a) Obtain expression for particle horizon for Einstein-de-Sitter universe.
(b) State and explain Einstein-de-Sitter universe model.
(c) Discuss Eddington's-Lamaitre cosmological model with cosmological constant $\wedge$.
