DD-2811

M. A./M. Sc. (Final) EXAMINATION, 2020

MATHEMATICS

(Optional)

Paper Fourth (ii)

(Wavelets)

Time : Three Hours

Maximum Marks : 100

Note : Attempt any *two* parts from each question. All questions carry equal marks.

Unit—I

1. (a) If the operator $P = P_{0,\in}$ defined by :

 $(\mathbf{P} f)(x) \equiv \overline{\mathbf{S}(x)} [\mathbf{S}(x) f(x) \pm \mathbf{S}(-x) f(-x)],$

then show that P is idempotent, self-adjoint and an orthogonal projection.

(b) Define Multiresolution Analysis. Show that if $g \in L^2(\mathbf{R})$, then $\{g(.-k) : k \in Z\}$ is an orthonormal system if and only if :

$$\sum_{k\in\mathbb{Z}} \left| \hat{g} \left(\xi + 2k\pi \right) \right|^2 = 1 \text{ for a.e. } \xi \in \mathbf{R}.$$

DD-2811

(c) Let *r* be a non-negative integer. Let ψ be a function
 in C^r(**R**) such that :

[2]

$$\left| \Psi \left(x \right) \right| \le rac{c}{\left(1 + \left| x \right| \right)^{r+1+\epsilon}}$$

for some $\in > 0$, and let $\psi^{(m)} \in L^{\infty}(\mathbf{R})$ for m = 1, 2,

...., r. If $\{\psi_{j,k} : j, k \in \mathbb{Z}\}$ is an orthonormal system

in $L^2(\mathbf{R})$, then show that all moments of ψ upto order *r* zero; that is :

$$\int_{R} x^{m} \psi(x) \, dx = 0$$

for all *m* = 0, 1, 2,, *r*.

Unit—II

2. (a) Suppose that $f \in L^2(\mathbb{R})$ and \hat{f} has a support contained in I = (a, b), where $b - a \le 2^{-J}\pi$ and $I \cap [-\pi, \pi] = \phi$; then show that for all $j \in \mathbb{Z}$:

$$(\mathbf{Q}_{j}f)^{\wedge}(\xi) = \hat{f}(\xi) \left| \hat{\psi} \left(2^{-j} \xi \right) \right|^{2}$$

a.e. on I.

(b) If ψ is band-limited orthonormal wavelet such that $|\hat{\psi}|$ is continuous at 0, then show that $\hat{\psi} = 0$ a.e. in an open neighbourhood of the origin.

$$\{f, Uf, ..., U^N f\},\$$

[3]

where $U \equiv U_j$ is an orthonormal system if and only if:

$$\sum_{l \in \mathbb{Z}} \left| \mathbb{F}[f](n+2^{j}l) \right|^{2} = 2^{-j}$$

for
$$n = 0, 1, 2, \dots, N = 2^{j} - 1$$
.

Unit—III

3. (a) If ψ is an orthonormal wavelet, then show that :

$$\psi(2^n\xi) = \sum_{j=1}^{\infty} \sum_{k \in \mathbb{Z}} \hat{\psi}(2^n(\xi + 2k\pi)\hat{\psi}(2^j(\xi + 2k\pi)))$$
$$\hat{\psi}(2^j\xi)$$

a.e. for all $n \ge 1$.

(b) Let {v_j : j ≥ 1} be a family of vectors in a Hilbert space H such that :

(i)
$$\sum_{n=1}^{\infty} \|v_n\|^2 = c < \infty$$

(ii) $v_n = \sum_{m=1}^{\infty} < v_n \cdot v_m > v_m$ for all $n \ge 1$
Let $F = \overline{\text{span} \{v_j : j \ge 1\}}$, then show that :

$$\dim F = \sum_{j=1}^{\infty} \|v_j\|^2 = c.$$

(A-28) P. T. O.

DD-2811

(c) Define low-pass filter. Let $\mu_1, \mu_2, \dots, \mu_n$ be 2π -periodic functions and set :

$$\mathbf{M}_{j} = \sup_{\boldsymbol{\xi} \in \mathbf{T}} \left(\left| \boldsymbol{\mu}_{j}(\boldsymbol{\xi}) \right|^{2} + \left| \boldsymbol{\mu}_{j}(\boldsymbol{\xi} + \boldsymbol{\pi} \right|^{2} \right),$$

then show that :

$$\int_{-2^n \pi}^{2^n \pi} \prod_{j=1}^n \left| \mu_j (2^{-j} \xi) \right|^2 d\xi < 2\pi \, \mathcal{M}_1 \dots \mathcal{M}_n \, .$$

4. (a) Define frame operator. For any $h \in L^2(\mathbf{R})$, if $Qh \in L^2(\mathbf{R})$ and $ph \in L^2(\mathbf{R})$, then show that :

(i)
$$R(Qh)(S, t) = S(Rh)(S, t) + \frac{1}{2\pi i} \frac{\partial}{\partial t}(Rh)(S, t)$$

(ii) $R(Ph)(S, t) = -i \frac{\partial}{\partial S}(Rh)(S, t)$

(b) Suppose that :

 $g \in L^2(\mathbf{R})$

and
$$g_{m,n}(x) = e^{2\pi i m x} g(x - n) \ m, n \in \mathbb{Z}$$

If $\{g_{m,n} : m, n \in \mathbb{Z}\}\$ is a frame for $L^2(\mathbb{R})$, then show that either :

or
$$\int_{R} x^{2} |g(x)|^{2} dx = \infty$$
$$\int_{R} \xi^{2} |\hat{g}(\xi)|^{2} d\xi = \infty$$

(c) Show that when {Q_j : j ∈ J} is a frame, f can be reconstructed from the coefficients < f, Q_j > using the dual frame {Q̃_j : j ∈ J} and that f is also superposition of Q'_j S with coefficients < f, Q̃_j >.

Unit—V

- 5. (a) If $N = 2^q$, $C_N = E_1 E_2 \dots E_q$, where each E_j is an $N \times N$ matrix such that each row has precisely two non-zero entries.
 - (b) Show that \tilde{y}_k equals $\frac{1}{2}e^{\frac{\pi ik}{2N}}$ times the DCT coefficients $\alpha_k^{(N)}$ for the function *f*.
 - (c) Show that the sequence :

$$\{u_{j,k} : 1 \le k \le l_j - 1\}$$

is an orthonormal basis for E_i .

50

DD-2811